Background

- Primary mammalian hepatocytes are the system of choice for in-vitro applications as drug metabolism, toxicity, and transporter assays.
- Multiple in-vitro systems are available for 2D and 3D culture of various cell types.
- Ferentis hydrogels characteristics:
 - Peptide hydrogel used as cell matrix for attachment and culture
 - CMP - collagen mimetic peptide as based material used (cell-repellent)
 - with molded tetrahedron microwell structure; dimensions: wide 400x400 μm, depth 350 μm -> increased cell-cell contacts in micro-wells, hydrogel diameter 10 mm for 48well plate

Objectives

- Compare standard 2D culture on collagen-coated plates with:
 - new 3D matrix for hepatocytes culture: hydrogel disc consisting of collagen mimetic peptide
 - 3D hanging drop spheroid culture
- Analyse of hepatocellular vitality and functions (Urea release, Cytochrome P450 inducibility)
- Study the cell sensitivity for hepatotoxic substance Diclofenac (ATP content, LDH activity)

Methods

- Cryopreserved primary monkey (Cynomolgus) and dog (Beagle) hepatocytes from 3 donors per species were thawed and then cultured separately in 2D on collagen-coated plates (24well/ 96well) or in 3D on hydrogels (48well plate) or in spheroids (96well plate).
- Medium change: daily in 2D and 3D on hydrogel; every 2 days in spheroids
- Assays for hepatocellular functionality and toxicity were performed on the indicated days. Results were normalised to cell number or culture volume.

Results

3D culture on hydrogel vs. 2D

- Hepatocytes were settled in microwells of hydrogel, but spread on gel surface early in culture; 2D cultures showed typical polygonal hepatocytes
- Urea release was significantly higher in 3D hydrogel cultures compared to 2D

3D culture in spheroids vs. 2D

- Few single small spheroids clustered with increasing culture time and formed one more condensed spheroid; 2D – differentiated hepatocytes

Conclusions

- Major differences seem to exist between different 3D culture systems and in comparison to a standard 2D -> this may lead to conflicting results in drug toxicity assessment
- 3D cultures on cell-repellent hydrogels with microwells supported urea release and Cytochrome inducibility, but did not show typical compact spheroids in micro-wells and the cells did not react to Diclofenac
- Spheroid 3D cultures reacted to hepatotoxin, but Cytochrome 1A2 was only marginally inducible and they were not advantageous regarding detoxification functions (urea release)

Comparison of 2D and 3D cultures of primary hepatocytes on hepatocellular functions and hepatotoxicity

H. Dinter1,2, A. Ullrich1, D. Runge1

1PRIMACYT Cell Culture Technology GmbH, Schwerin, Germany; 2Hochschule Biberach, University of Applied Sciences, Biberach, Germany